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Why We Need Security in ML-EDA
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* Problem in ML-EDA
* Lack of data for training
« Why?
 Security concerns on IP
* Large volume of storage

If it is not sharable, need a proxy and federated learning



What is Federated Learningl'l (FL)?
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Model merging scheme : effective
aggregation of independently trained
models

Clients share locally trained weights
with the host

The host aggregated these local
weights

Aggregated weights are distributed
Host has no direct access to private
data

pas ' EEH [1] McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and statistics. PMLR, 2017.



Main Concern of FL — Data Non-lID-ness (1)
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* Non-lID : The real-world data distribution is not independent and is unequally distributed.
 Label Skew: Distribution of unique label data per client

 Quantity Skew: Distribution of different quantities of feature data per client
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Main Concern of FL — Data Non-lID-ness (2)
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 Federated Averaging!'l : Naive aggregation algorithm where weights are averaged

« Distribution of local dataset is highly different from the global distribution

« Converged model by FedAvg may be far from global optima = “driftl%l” of local updates
« Performance degradation of FedAvg in a non-lID data setting

pas ' EEH [2] K, Sai Praneeth, et al. "Scaffold: Stochastic controlled averaging for on-device federated learning." arXiv preprint arXiv:1910.06378 2.6 (2019).



Existing FL Model Merging Algorithm
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 FedNoval®l: Normalize the number of training steps in model merging
* FedProxI“: Minimize difference of L2 norm between global and local weights
« These model merging methods are proposed for the image or text data

[3] W, Jianyu, et al. "Tackling the objective inconsistency problem in heterogeneous federated optimization." Advances in neural information processing systems 33 (2020): 7611-7623.
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Non-lID-ness of EDA Data (1)
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 In EDA data, design size is the main source of data non-lID-ness
 Larger designs have larger feature space compared to smaller designs
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Non-lID-ness of EDA Data (2)
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» The feature space of small designs tend to overlap with larger designs
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FedEDA - Effectively Handling the Non-IlID-ness

* We handle non-lID-ness of EDA data by

considering the design size and L2 norm Design Size of B : S
 So, during aggregation, the influence of
smaller designs will be attenuated xS,
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FedEDA - Overall Framework

( Host )
( ) a ' d B
@ Receive client metadata @ |Initial Broadcasting O Weight Aggregation
Design Size w - ZK ny Wk
Initial t+1 Wi+l
$1 9205 Feature Extractor Weights Model k=1 M
s, 59431 N
( S3 33021 Global Metadata I | ( — | gy { I—  —|
s, 16519 Smax = Max{sy:sq11} ( ]| | )| |C )  I—
- 383 Smin = mln{sll 51111} o | O | e | Y | o | [ )
= 0 1B =5 [
| . | )
\_ J
Global Training Round t+1
Locally trained weights e
areﬁransmitted 3, f Client A 1 ( Client B A Client C ) Aggregated weights
host for aggregation - - - are broadcasted for
e e ) = e local training
k
w
t+1 I Feature Extractor H P&R | I Feature Extractor H P&R | | Feature Extractor H P&R |
= : =
L Jl | )| |C J Local Database Local Database Local Database [ — Wii1
—
=== 00000 EII:IDEIEIEID 000 ) |
o
—] ! —] = ! —]
 —  I— I:l  I—  —
c— “I I:ll |1+ I  I— R [
 I—  I—  I— c—  —
Fywix:y) +ag IS = s, Z Fiw;x;3) + a5 |15 = s.I[* D Fwixy) +ak|is - s’
(x,y)EDgp (x,y)€EDg (x,y)EDg
L Wt+1 —wi —ngq J L Wt+1 —wi—ng: J L W§+1 < wi—-ng; )

© Client Update

« FedEDA exploits the data size of the circuit and L2 norm into the loss function for EDA applications
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Experimental Results
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« We validated FedEDA framework on three early-stage prediction tasks
 # of design: 20, # of client: 2, 3, 5, and label skew + quantity skew are included
Better model performance than traditional FLs
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Impact in the EDA Community
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* FedEDA can provide a secure FL environment for a collaborative ML-based IC design system
« Active participation in this collaborative environment shall reinforce ML quality and trustworthiness

rrPOS T2

12



Future Directions

* Investigating EDA data distributions further
 There are multiple factors attributing to the varying data distributions in EDA (e.g., tech.
library, cell height, utilization, target clock period ...)
 Other sources of non-lID-ness will be considered in our FedEDA framework

 Collaborative ML environment for EDA
 Secure multi-party computation is crucial in collaborative ML > FedEDA
 Other techniques besides model merging can be utilized = Model editing
* Investigation of EDA data and collaboration security for collaborative ML-EDA
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Thank You !
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