FedEDA: Federated Learning Framework for Privacy-Preserving ML-EDA

Seokhyeong Kang Department of Electrical Engineering Pohang University of Science and Technology

Why We Need Security in ML-EDA

- Problem in ML-EDA
 - Lack of data for training
- Why?
 - Security concerns on IP
 - Large volume of storage

If it is not sharable, need a proxy and federated learning

What is Federated Learning^[1] (FL)?

- Model merging scheme : effective aggregation of independently trained models
- Clients share locally trained weights with the host
- The host aggregated these local weights
- Aggregated weights are distributed
- Host has no direct access to private data

Main Concern of FL – Data Non-IID-ness (1)

- Non-IID : The real-world data distribution is not independent and is unequally distributed.
- Label Skew: Distribution of unique label data per client
- Quantity Skew: Distribution of different quantities of feature data per client

Main Concern of FL – Data Non-IID-ness (2)

- Federated Averaging^[1] : Naïve aggregation algorithm where weights are averaged
- Distribution of local dataset is highly different from the global distribution
- Converged model by FedAvg may be far from global optima \rightarrow "drift^[2]" of local updates
 - Performance degradation of FedAvg in a non-IID data setting

Existing FL Model Merging Algorithm

- FedNova^[3]: Normalize the number of training steps in model merging
- FedProx^[4]: Minimize difference of L2 norm between global and local weights
- These model merging methods are proposed for the image or text data

Non-IID-ness of EDA Data (1)

- In EDA data, design size is the main source of data non-IID-ness
- Larger designs have larger feature space compared to smaller designs

Non-IID-ness of EDA Data (2)

FedEDA – Effectively Handling the Non-IID-ness

- We handle non-IID-ness of EDA data by considering the design size and L2 norm
- So, during aggregation, the influence of smaller designs will be attenuated

FedEDA – Overall Framework

• FedEDA exploits the data size of the circuit and L2 norm into the loss function for EDA applications

Experimental Results

- We validated FedEDA framework on three early-stage prediction tasks
- # of design: 20, # of client: 2, 3, 5, and label skew + quantity skew are included
- Better model performance than traditional FLs

Impact in the EDA Community

- FedEDA can provide a secure FL environment for a collaborative ML-based IC design system
- Active participation in this collaborative environment shall reinforce ML quality and trustworthiness

Future Directions

- Investigating EDA data distributions further
 - There are multiple factors attributing to the varying data distributions in EDA (e.g., tech. library, cell height, utilization, target clock period ...)
 - Other sources of non-IID-ness will be considered in our FedEDA framework
- Collaborative ML environment for EDA
 - Secure multi-party computation is crucial in collaborative ML \rightarrow FedEDA
 - Other techniques besides model merging can be utilized \rightarrow Model editing
 - Investigation of EDA data and collaboration security for collaborative ML-EDA

Thank You !

