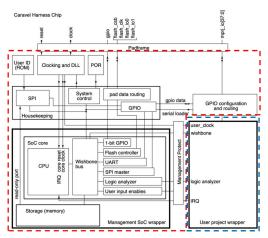
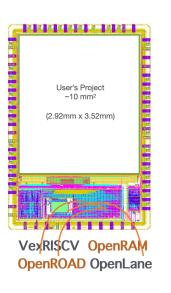
From Walking to Running

Andrew Wright

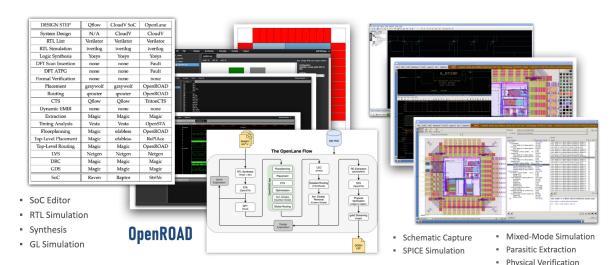

Andrew.wright@efabless.com

SVP R&D and New Product Introduction



Birds of a Feather DAC 2024

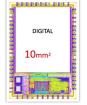
Caravel Open Source SoC Platform



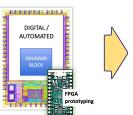
https://github.com/efabless/caravel

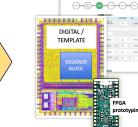
github/workflows

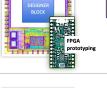
OPEN SOURCE DESIGN FLOWS, PDK & IP

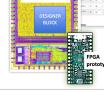


OpenLane


One Size Fits All

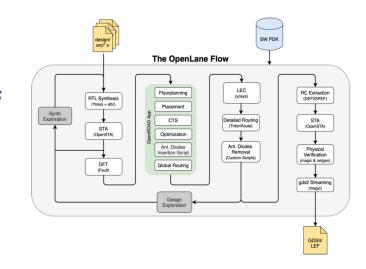

LOW **COMPLEXITY**


Digital & low frequency analog Enabling larger designer base



HIGH **COMPLEXITY**

Complete Custom ASIC Analog & Digital



OpenLane DIGITAL COMPILER-LIKE RTL2GDS

Automate code-to-chip like a **GNU** software **compiler -** with trade-offs in area and performance.

It opens the door for software developers to generate hardware That's at least a 100x more potential designers!

Shuttle Schedule

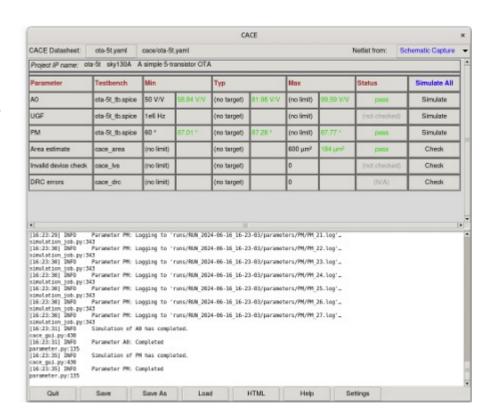
	CI 2404	CI 2406	CI 2409	CI 2411
Engineer Samples	100 QFN	100 QFN	100 QFN	100 QFN
Evaluation Boards	√	√	V	√
Submission Deadline	Apr 24, 2024	Jun 3, 2024	Sep 16, 2024	Nov 11, 2024
Delivery*	Sep 2024	Nov 2024	Feb 2025	Apr 2025
Bare Die Option	√	√	√	√
Reram Support	√		√	

Production Volume

chipIgnite provides an easy path from prototyping to low, medium and high volume production. The solution allows customers to share masks and fabrication costs with others, making low volume production more affordable.

	Prototype Volume	Production Eval	Low Volume	Medium Volume	High Volume
Number of Parts	100	1000	10,000	100,000	1,000,000 +
Maskset	Shared	Shared	Shared	Shared	Dedicated
# Wafers	< 12	12	50 - 100	200 - 400	1000+
Packaging	64L QFN, Bare Die	64L QFN, Bare Die	8, 16, 32, 64L QFN/SOIC, Bare Die	8, 16, 32, 64L QFN/SOIC, Bare Die	Fully custom
Production Test			√	√	√

IP Marketplace

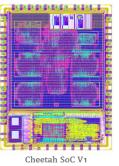

Efabless marketplace is a one stop shop for digital, analog and analog mixed signal IPs, developed by Efabless and the community.

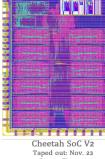
Available IPs on the Marketplace						
Digital	Analog					
4KByte Commercial SRAM	Ultra low-power comparator	HGBW Operational amplifier				
16KByte Commercial SRAM	Instrumentation amplifier	Over-voltage detector				
32KByte Commercial SRAM	LP Operational amplifier	Brown-out detector				
GPIO peripheral	Comparator	Temperature sensor				
32-bit timer and PWM generator	1.8v Precision bandgap	Low-speed XO				
Quad SPI Flash memory controller	Low-power 1.8v LDO	High-speed XO				
DFFRAM512x32	Current reference bias generator	Programmable PLL				
DFFRAM256x32	16-bit capacitive DAC	Programmable Sallen-Key filter				
DFFRAM128x32	12-bit resistive DAC	Bandgap-referenced Power-on-Reset				
UART	8-bit Rheostat	16-bit SAR ADC 1MSPS				
I2S receiver	12-bit IDAC					
I2C master controller						
SPI master controller						

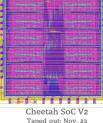
Getting started with Cace

Automate anything that you will do more than twice

- > Circuit Automatic Characterization Engine
- > Using CACE saved time
- CACE increased probability of success
- CACE is actively supported
- CACE is both FREE and Open
- CACE supports CI
- > https://github.com/efabless/cace




Productivity Impact


- Reduced HC design teams
- Short time from Concept to Cash
- Reduced Complexity
- **Lower Cost**

80 1.62 1.62 1.62 1.8 1.8 1.8 1.98 1.98 1.98 3.1 3.3 3.6 3.1 3.3 3.6 3.1 3.3 3.6

1.62 1.62 1.62 1.8 1.8 1.98 1.98 1.98 3.4 3.3 3.6 3.4 3.3 3.6 3.4 3.3 3.6 0 1.62 1.62 1.62 1.8 1.8 1.8 1.98 1.98 1.98 3.1 3.3 3.6 3.1 3.3 3.6 3.1 3.3 3.6

Clear Taped out: Apr. 23 Based on Caravel

Fixed Caravel 1

1st Taped out: Dec. 22 Based on Caravel

Blizzard

Taped out: Apr. 23

Based on Caravel

Swift

Taped out: Apr. 23

Based on Caravel

6 designers, 91 weeks, 11Chips

<\$110K Silicon Cost

<\$20K Capital Cost

Full Temp and Voltage "Char"

Caravan Taped out: Apr. 23 Based on Caravel

Cheetah 2 Taped out: Nov. 23 Based on Open Frame

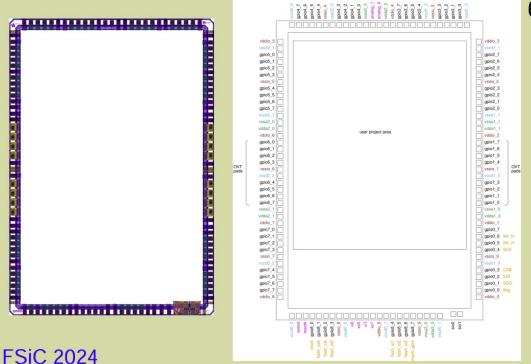
Cheetah 1 Taped out: Sept 23 Based on Caravel

OpenFrame Taped out: Jun. 23 Based on Caravel

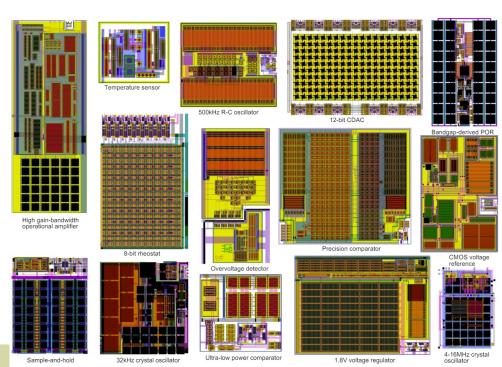
Caravel V2 Taped out: Nov. 23 Based on Open Frame

Caravel DFT Taped out: April. 24 Based on Open Frame

Cheetah 3 Tape out Planned: Jul. 24 Based on Caravel V2


Running with Analog:

38-64 GPIO, 0-16 OVT IO, SIO with analog for differential IO.

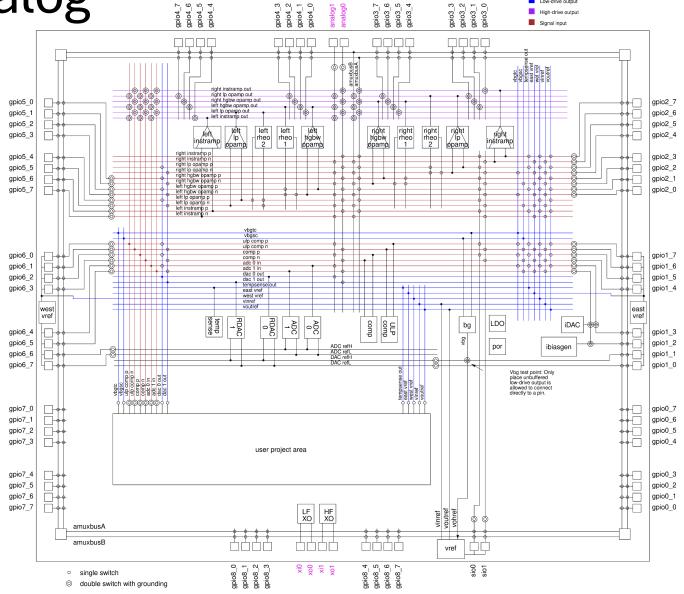

4x the power for the IO ring SSO.

Full 50Mbits/s throughput.

Analog mux IO useable

64 user/mgmt GPIO 8 mgmt GPIO 2 SIO pads 2 analog pads 16 GPIO are OVT 4 XO pads 8 1.8V supply pins 8 1.8V ground pins 9 3.3V supply pins 9 3.3V ground pins 6 analog 3.3V pins 6 analog ground pins June 19, 2024

Running with IO and Analog


20X the included analog IP

~30x the available analog IP

2 oscillators

2 crystal connections

Analog SOC architecture

Low-drive output

NOTES:

- 1. The biasing network is not depicted, ibiasgen takes input from the bandgap and distributes currents to all blocks requiring them
- All names should match the names used in the verilog, schematic, and layout of the cheetah_v3_analog block and subcircuits.
- 3. There are direct connections from pads on gpio3 and gpio4 (16 total) to the user project area that are not depicted
- 4. There are two outputs from ibiascen (50nA and 100nA) routed to the user project area that are not depicted.
- 5. The switches shown between each GPIO and SIO pad and amuxbusA and amuxbusB are part of the pad cell, not the analog subsystem.

Getting started with Digital IP

OS Digital and Systems IP:

5X the available digital peripherals

4X higher Flash IF bandwidth

>100X higher CPU throughput with Cache optimiztion

Embedded accelerators included

Coming Soon: 2D convolution and CNN accelerator

Commercial:

Commercial SRAM in Q2 24

Commercial OTP prototype tapeout in Q3,

Commercial Flash in Q4

Coming Soon: Custom ML model flow and ML accelerators.

Other Templates:

Caravel/4

Beginning to Fly:

How can the community help:

Our immediate needs to increase traction and fund continueing operations:

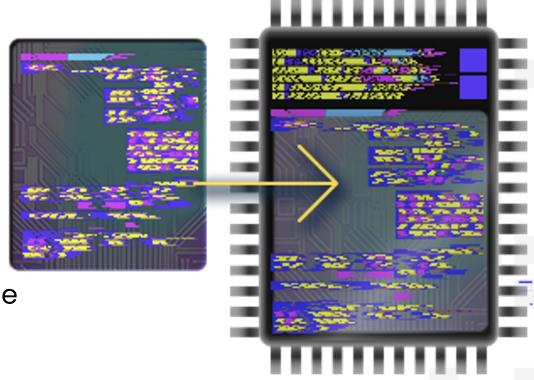
Efficient compute parallelism on all job types (Sims, Verification, Extraction, DRC).

We are floating the compute and as designs get more complex it is getting expensive. We need both efficiency and parallelism.)

Flow: UVM enhancements, UPF completion, Clock tree enhancements, IR Drop, Advanced DFT

Analog IP: Standardized Repo structure adoption. 16b 1MSPS ADC, Advanced 2nd and 3rd order programmable Filter Functions.

Digital IP: Advanced motor control, 32bit MCU peripherals, Programmable DSP block, Improved eFPGA, Accelerators.


Memories: RAM and DP RAM macros.

EcoSystem: Security Solution, Cloud Stack, Radio SIP suggestions

IDE standardization: Getting users to the benchmark flows quickly with all the tools for Analog, MS and OL/OR.

chipignite Empowering Innovation in IC Design

- Innovative Design Platform
- Cost-Effective Solution
- Rapid Development Cycle
- Flexible and User-Defined
- Robust Community Support
- Enhanced Supply Chain Resilience

Running with:

Thank You to the entire OS Community!

This could not be built without your contributions

We need your input: What do you need to succeed?

Video Tutorials - https://efabless.com/getting-started

Join Our Slack Community - https://open-source-silicon.dev/

Contct Us - shuttle@efabless.com

Visit Us - www.efabless.com