

Thermal design as a first-order concern

â

Mircea Stan <u>mircea@virginia.edu</u> University of Virginia

Outline

IC design metrics
Worst-case vs. adaptive design
Thermal design knobs
Architecture/Circuit – ESL/RTL/P&R co-design
NSF POSE

IC design metrics

A (60's-70's) -> PA (80's-90's) -> PPA (2000's) -> PPAT (2020's)
 (Moore) (Dennard) (Chandrakasan)
 Thermal Design Power (TDP)
 Same silicon/different cooling -> drastically different performance
 2.5D/3D - dimensional mismatch between power dissipation (volume L³) and heat removal (area L²)

Traditional thermal design

- post chip design by a packaging team
- power model typically fixed/steady state (worst case)
- thermal model typically steady-state with or without spatial detail
- IC energy cycle

Coudrain, Perceval, et al. "Experimental Insights into Thermal Dissipation in TSV-Based 3D Integrated Circuits." IEEE Design & Test of Computers 1 (2016): 1-1.

Worst case vs. adaptive design

HotSpot original contributions (20 years ago!):

• Power cannot be used as a direct proxy for thermals

ONeed for thermal models for both spatial and temporal variations

Recent needs in thermal research – 3DIC

Interposer vs. EMIB vs. TSV-based 3DDifferent tradeoffs!

DRAM Stack

Cadix, Lionel. "2.5D interposer 3DIC and TSV interconnects." *European 3DTSC Summit,* January 2013 (2013).,

Hutton, Mike. "Stratix® 10: 14nm FPGA delivering 1GHz." *Hot Chips 27 Symposium (HCS), 2015 IEEE*. IEEE, 2015.,

Michailos, J., et al. "New challenges and opportunities for 3D Integrations." *Electron Devices Meeting (IEDM), 2015 IEEE International.* IEEE, 2015.

HotSpot 7.0 three circuit abstractions for 3D IC

Electrical Circuit	Models heat dissipation throughout the 3D IC	Voltage	Electric Current Flow	Electrical Resistance
Pressure Circuit	Models the flow of coolant through the microchannels	Pressure	Fluid Flow	Hydraulic Resistance
Thermal Circuit	Models heat transfer throughout the 3D IC	Temperature	Heat Flow	Thermal Resistance

Thermal design knobs

Back to energy cycle:

- Adjustable power model spatial and temporal adjustments: dark silicon, migrating computation, big/LITTLE, throttling, DVFS, power modes, etc.
- NEW Adjustable thermal model spatial and temporal adjustments: fluid flow pattern, fluid flow rate.

From fixed to adjustable thermal model

Changing the flow rate (pump pressure)

Cooling a 3D PiM

Processing-in-3D-Memory

Heat sink, unidirectional flow, alternating flow

Junhan Han et al. "Thermal Simulation of Processing-in-Memory Devices using HotSpot 7.0", Therminic 2022

BEOL modeling

Architecture/Circuit – ESL/RTL/P&R co-design

- Integration with/expansion of OpenROAD
- OGate-level thermal transient simulation will be too slow
- Need to run architecture-level workloads
- Need to extract thermal models to run pre- and post-RTL
 Need composable models/solvers (Spice?)

NSF POSE

- Pathways to Enable Open-Source Ecosystems (POSE)
- <u>https://new.nsf.gov/funding/opportunities/pathways-enable-open-source-ecosystems-pose</u>
- •September 7 2023 Deadline date
- OPhase I: OSE Scoping and Planning Proposals \$300k/1 year
- Phase II: Establishment and Expansion Proposals \$1,500,000/2 years
- Opcoming July 27, 2023 Webinar: NSF Pathways to enable Open-Source Ecosystems (POSE)

