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Architecture 2.0

The era when we use Al/ML methods to

(1) minimize human intervention,
(2) build complex, systems,
(3) in a shorter time frame.
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“Act like an architect — design me a custom 64-bit RISC-V processor with
and optimize it for less than 3 Watt TDP in a
5 nm LP process node using the TSMC plugin library”



“... while you are at it add a few custom functional units that
[Hyoukjun et al. MLSys’23]”



“...and don’t forget to generate all the unit test cases to
and explain the design choices.”



Challenges

Datasets

What datasets do we need? How we
should collect these datasets for
architecture research? What metadata
should the datasets contain to enable
broad usage? How do we create standard
data formats from any ML algorithm?

ML Algorithms

How can we learn and apply new ML
algorithms to effectively design
high-performance/efficient systems? How
do we make our community more
accessible to ML researchers? How do we
embrace ML algorithm design as part of
architecture research?

Workforce & Training

Can we create a systematic playbook for
best known methods? How do we ensure
strong baselines and reproducibility?

Tools & Infrastructure

How do we reduce the sim2real gap? What
instrumentation mechanisms do we need
for creating the datasets? What gym
environments do we need to enable
data-centric Al? How do we define
standard data formats for interoperability?

Best Practices

Can we create a systematic playbook for
best known methods? How do we ensure
strong baselines and reproducibility?
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Datasets
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architecture research? What metadata
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Lack of large, high-quality public datasets
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Researchers Blur Faces That Launched a Thousand
Algorithms

Managers of the ImageNet data set paved the way for advances in deep learning. Now they’ve taken a big step to protect people’s
privacy.

e Need public data, but data
needs to be held private

e Need to strike a safe balance
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internet for creating

the

"scrape”

Inability to
public datasets
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Data generation from cycle-level/accurate
simulators is slow and difficult
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Challenges

ML Algorithms

How can we learn and apply new ML
algorithms to effectively design
high-performance/efficient systems? How
do we make our community more
accessible to ML researchers? How do we
embrace ML algorithm design as part of
architecture research?
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Rapidly evolving ML
algorithms landscape

e Many different algorithms out
in the wild to choose from

e How do we know which
algorithm is best suited for
which architecture problem

e How do we compare these
algorithms fairly against one
another
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Rapidly evolving ML algorithms landscape

e Take RL for example
o Many different variants exist
o New algorithms emerging

o Hyperparameters '_ [
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Challenges

Best Practices

Can we create a systematic playbook for
best known methods? How do we ensure
strong baselines and reproducibility?
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ML for Systems

e Problem suitability

o High or low-dimensionality
e Deployment constraints

o Latency

o Spacel/time overheads

o Hardware

o Risk/robustness/interpretability
e Data availability

o Privacy/security

o Distribution shifts

»

“F
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Difficulty with verifying, validating, and

interpreting ML algorithms

Task

Performance

How well does

the agent
perform the
task it was
trained for?

System

Performance

What are the
compute
requirements
needed to train
and deploy the
agent?

Reliability

How stable is
the agent’s
performance
during training
and inference?

Generalization

How well does
the agent
perform on

of what it was
trained on?

Cost

What are the
trade-offs
between using
the various ML
methods?




Challenges

Tools & Infrastructure

How do we reduce the sim2real gap? What
instrumentation mechanisms do we need
for creating the datasets? What gym
environments do we need to enable
data-centric Al? How do we define
standard data formats for interoperability?
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Full-stack Co-Design
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Full-stack Co-Design
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Tools & Infrastructure

ArchGym Agents
q |
CIEE D
Reinforcment Learning Genetic Algorithm Bayesian Optimization
ArchGym
Interface ]
i

ArchGym ArchGym Environment

Dataset
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ABSTRACT

Machine learning (ML) has become a prevalent approach to tame
the complexity of design space exploration for domain-specific ar-
chitecture While appealing, using ML for design space exploration
poses several challenges. irst, it is not straightforward to identify

Harvard University
Cambridge, Massachusetts, USA

necessarily better than another (e.g, reinforcement learning vs.
Bayesian methods). We coin the term “hyperparameter lottery” to
describe the relatively probable chance for a search algorithm to
find an optimal design provided meticulously selected hyperparam-
cters. Additionally, the ease of data collection and aggregation in
ARcHGYM facilitates research in ML-aided ign space

the most suitable algorithm from an & pool of ML
methods. Second, assessing the trade-offs between performance
and sample efficiency across these methods is inconclusive. Finally,
the lack of a holistic framework for fair, reproducible, and objective
comparison across these methods hinders the progress of adopt-
ing ML-aided architecture design space exploration and impedes
creating repeatable artifacts. To mitigate these challenges, we in-

exploration. As a case study, we show this advantage by developing
aproxy cost model with an RMSE of 0.61% that offers a 2,000-fold re-
duction in simulation time. Code and data for ARCHGYM is available
at https://bitly/ ArchGym.

troduce ARCHGYM, an op CCS CONCEPTS
— — framework that connects a diverse range of search algurn.hms to - Computer systems organization — Architectures; - Com-
- - architecture simulators. To demonstrate its utility, we evaluate puting methodologies — Reinforcement learning; Machine
— — ARcHGYM across multiple vanilla and domain-specific search algo- learning algorithms; Bio-inspired approaches.
rithms in the design of a custom memory controller, deep neural
T network accelerators, and a custom SoC for AR/VR workloads, KEYWORDS
ing over 21K i The results sug-

ArchGym
Dataset

ArchGym Env

ronment

gest that with an unlimited number of samples, ML algorithms
are equally favorable to meet the user-defined target specification
if its hyperparameters are tuned thoroughly; no one solution is
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Challenges

Workforce & Training

Can we create a systematic playbook for
best known methods? How do we ensure
strong baselines and reproducibility?
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Solving hard problems needs a community

=]

Foster a collaborative
community with a
shared vision of ML

and systems
researchers

=
’
Develop and share
curated datasets that
are representative of

diverse workloads
across the community

A

Encourage
data-driven Al
research and
innovation for
Architecture 2.0
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A Call to Action

e Join the activity to define the future of
architecture 2.0

e Build a community around the fundamental
challenges we have to collectively address

e August 4th virtual workshop
https://sites.google.com/g.harvard.edu/arch?2

e Kick-off a community project
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Architecture 2.0 is a community-driven ecosystem that
employs machine learning to minimize human intervention and

build more complex, efficient computer systems in a shorter

. n
timeframe.

Event Overview

ML-driven architecture research holds great promise. But it also poses several challenges that we must understand and
tackle collectively. The figure below illustrates some of the major challenges, including but not limited to the following and

to tackle these we need a collective effort:

INABILITY TO "SCRAPE" THE

LACK OF LARGE. INTERNET FOR CREATING
HIGH-QUALITY (IE. PUBLIC DATASETS DATA GENERATION FROM
REPRESENTATIVE) PUBLIC CYCLE-LEVEL SIMULATORS IS
DATASETS SLOW AND DIFFICULT
o /

«
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