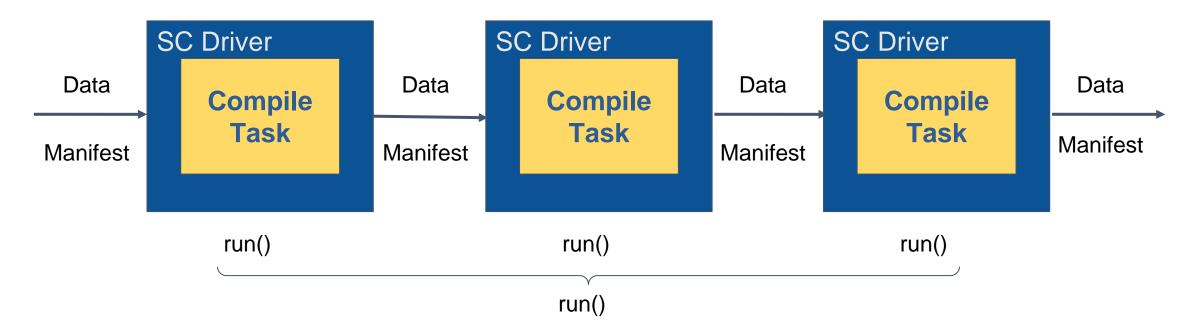


SiliconCompiler: "Make for HW"

Andreas Olofsson, William Ransohoff, Noah Moroze
Zero ASIC Corporation
Cambridge, MA
{andreas,will,noah}@zeroasic.com

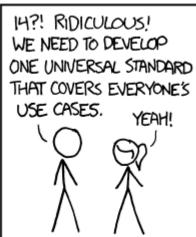

SiliconCompiler: A modular build system for hardware

- "Make for hardware"
- Standardized build schema (json)
- Python OO API
- Flowgraph based execution
- Developed with cloud first approach
- Automated actions/metrics tracking
- Built for commercial <u>AND</u> open source ASIC/FPGA tools.
- https://github.com/siliconcompiler

Basic Operation: Configure, Run, Observe

- 1. All compilation tasks (ie EDA tools) are wrapped with SiliconCompiler (SC) interfaces to enable configuration and results tracking in a unified JSON manifest.
- 2. The manifest is the golden database that defines the "what, how, when, who, why" of compilation.
- 3. A static flowgraph defines the sequence of tasks to be executed by the atomic run() function.
- 4. After running, all results and metrics accessible through the manifest.

The Manifest: An Open "CAD Standard"


Group	Parameters	Examples
asic	46	diearea , maxfanout, cell lists, delay model
intput/output	2	sdc, rtl, def,
constraint	8	PVT, SDC, checks,
options	50	loglevel, skip, optmode, path,
unit	10	Time, voltage, current,
pdk	50	Runset, stackup, process,
tool	29	Options, exename, license,
flowgraph	9	Inputs, weights, goals
checklist	9	Rationale, criteria,
metric	45	Setupwns, errors, warnings,
datasheet	39	Abs voltage, setup, hold
package	32	Dependency, author,

- A unified HW compilation manifest
- Standardize all common settings
- Bypass parameters for "one-offs"
- Validated with 5 PDKs, 35 EDA tools,

ASIC/FPGA/HLS flows

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

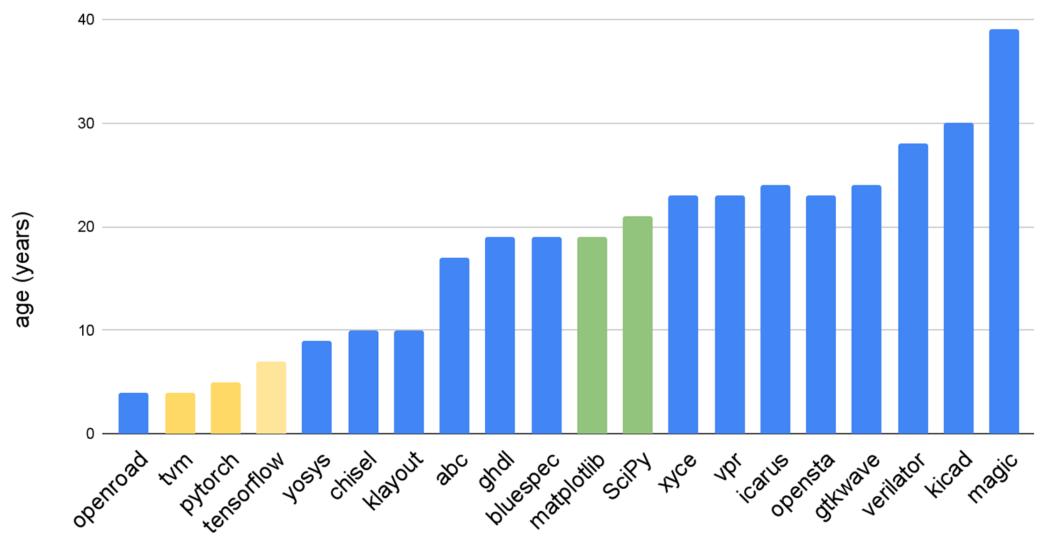
SITUATION:
THERE ARE
14 COMPETING
STANDARDS.

SOON: SITUATION: THERE ARE 15 COMPETING STANDARDS.

So many options...which is the right one?

Manifests:

SC, bender, fusesoc, metrics (openroad), mflowgen, hammer, cadre, orflow, openlane,
 bazelhdl, make/homegrown,...


Collaborations:

- Openroad Integration: https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/commit/94e9240c7c5297e263cdca862b5c4b1df3fb0111
- Caravael/skywater:

https://github.com/siliconcompiler/siliconcompiler/commit/fcbf3f7f75b786f0577311fc0714d27db0b1faa5

SC is here to stay, not going anywhere!

Reminder: Software is a Lifetime of Maintenance....

Public Service Announcement

OpenROAD: https://github.com/The-OpenROAD-Project/OpenROAD

OpenSTA: https://github.com/The-OpenROAD-Project/OpenSTA

Align: https://github.com/ALIGN-analoglayout/ALIGN-public

Magical: https://github.com/magical-eda/MAGICAL

ACT: https://github.com/asyncvlsi/act

Xyce: https://github.com/Xyce/Xyce

SystemC-TLM-lib: https://github.com/Xilinx/libsystemctlm-soc

Pono: https://github.com/upscale-project/pono

LSOracle: https://github.com/lnis-uofu/LSOracle

OpenFPGA: https://github.com/lnis-uofu/OpenFPGA

PRGA: https://github.com/PrincetonUniversity/prga

BlackParrot: https://github.com/black-parrot/black-parrot

OpenFASOC: https://github.com/idea-fasoc/OpenFASOC

Were IDEA/POSH successful?

Dunno, you be the judge!

Summary of state of EDA/IP...

https://github.com/aolofsson/awesome-hardware-tools

https://github.com/aolofsson/awesome-opensource-hardware

