MacroPlacement and SpecPart Repositories in the TILOS AI Institute

Andrew Kahng, UC San Diego

https://tilos.ai

TEXAS Yale

Closing the Gap Between Research and Practice

- "Data, Benchmarking and Roadmapping" is a goal of the TILOS AI institute (<u>https://tilos.ai</u>)
- Change how research is conducted and translated into practice in high-stakes applied optimization domains
 - E.g., IC design automation

- Enable research and discovery at the leading edge
 - Less barriers

TEXAS Yale

- Culture of transparency and reproducibility
- Velocity of innovation and improvement

What is MacroPlacement? https://github.com/TILOS-Al-Institute/MacroPlacement

- Open, transparent effort to provide a public, baseline implementation of Google Brain's <u>Circuit Training</u> (Morpheus) deep RL-based placement
 - With thanks to the Google Brain team for very helpful Q&A, discussions
- Testcases
 - Fully-formed and relevant: Ariane, MemPool, NVDLA
- Enablements
 - Accessible to all: NanGate45, ASAP7, SKY130HD + "FakeRAM", "FakeStack"
- Flows
 - Tool setups and runscripts **both proprietary and open-source**
 - Includes Cadence tool scripts: reproducible results under recent policy change
- Code Elements
 - Implementations of missing/binarized pieces, format translators, etc.
- Solutions
 - Post-routing results from three SP&R flows

First Permitted Sharing of Commercial EDA Scripts in GitHub

- "We thank Cadence for granting permission to share our research to help promote and foster the next generation of innovators."
 - Kudos and Thanks to David Junkin and team at Cadence !!!
- Flow-1: Genus + Innovus

TEXAS Yale

- Flow-2: Genus iSpatial + Innovus
- Flow-3: Yosys + OpenROAD
- Flow-4: Circuit Training with Genus iSpatial netlist

Ariane133 on NanGate45. Left: Flow-1. Right: Flow-3.

MemPool Tile on NanGate45. Left: Flow-1. Right: Flow-3.

Observation: Human-Expert Baselines are Possible!

- Step 1. Choose open design in open enablement
- Step 2. Run physical synthesis (Genus iSpatial, reproducible!)
- **Step 3.** Run gridding (+ grouping, netlist clustering) per Circuit Training methods
- Step 4A. Gridded Human Baseline: Human expert performs macro placement with gridding constraint
- Step 4B,C. Circuit Training, MacroPlacement solutions: All inputs available, apples-to-apples
- Step 5. Finish PD flow (Innovus, reproducible!) including Place, CTS, Route, Optimization → report final Routed WL, WNS/TNS, Power

TEXAS Yale

Ariane-133, NG45 Gridded <u>Human Baseline</u>

Stage in Physical Design	Core Area (um^2)	Standard Cell Area (um^2)	Total Power (mW)	Wirelength (m)	WNS (ps)	TNS (ns)
Post-placement	2560080	215189	0.29	4.47	-2	-0.05
Post-CTS	2560080	216326	0.30	4.47	1	0
Post-Routing	2560080	216326	0.30	4.59	62	0

Code Elements: Fill in Undocumented* or Binarized Pieces

Gridding

- Determines dissection of layout canvas into rows and columns of gridcells
- Grouping
 - Ties closely-related logic to hard macros and clumps of (placed) IOs
- Hypergraph clustering
 - Uses hMETIS and some initial coordinate information to form soft macros
- Force-directed placement
 - Places the center of each soft macro onto a gridcell center
- Simulated annealing
 - Places the center of each hard macro onto a gridcell center
- Format translators
 - Converts from LEF/DEF or Bookshelf to Protocol Buffer, .plc format

• Collaborators and Thanks:

- Sergio Guadarrama, Anna Goldie, Azalia Mirhoseini, Eric Johnson, Ed Chi + others (Google)
- Zhiang Wang, Sayak Kundu, Ravi Varadarajan, Yucheng Wang, C.-K. Cheng (UCSD)

What is HypergraphPartitioning?

- Purpose: Maintain and advance the SOTA for hypergraph partitioning
- This means:
 - Golden benchmark testcases, format converters
 - Golden solution evaluators

TEXAS Yale

- World's best-ever solutions ("leaderboard")
- World's best-ever optimizers (in open source)
- Collaborators and Thanks: Ismail Bustany (AMD), Yiannis Koutis (NJIT), Bodhisatta Pramanik (Iowa State), Zhiang Wang (UCSD)

Statistics Cutsize

imbalance factors (ε)

	Statistics		Cutsize				
Testcase	#Vertices	#Hyperedges	ε = 1	ε = 2	ε = 5	ε = 10	ε = 20
sparcT1_core	91976	92827	1088	1012	1001	1090	903
neuron	92290	125305	239	239	239	239	206
stereovision	94050	127085	186	180	180	91	91
des90	111221	139557	416	402	393	393	358
SLAM_spheric	113115	142408	1061	1061	1061	1061	1061
cholesky_mc	113250	144948	343	285	285	285	285
segmentation	138295	179051	165	126	125	125	78
bitonic_mesh	192064	235328	588	587	581	543	483

https://github.com/TILOS-AI-Institute/HypergraphPartitioning

Current Leaderboard of minimum hyperedge cut values on Titan23 testcases with different

Cutsize vs. Runtime

Cutsize Results

- New best-known solutions for almost every benchmark
- Cutsize reductions of ~70% on gsm_switch, ~25% on sparcT1_core

Testcase	3	Best Public	Spec Part	Testcase	3	Best Public	Spec Part	Testcase	3	hMetis cutsize	Spec Part
IBM04	10	542	388	IBM03.w	10	681	541	denoise	20	478	224
IBM06	10	885	733	IBM07.w	10	737	634	gsm_switch	20	5352	1407
IBM13	10	832	693	IBM10.w	10	756	443	dart	2	844	807
IBM15	2	2833	2741	IBM12.w	2	1998	1965	LU230	2	3328	3273
IBM16	2	2059	1951	IBM15.w	2	2099	1904	sparcT1_chip2	2	1198	899
IBM17	2	2403	2354	IBM17.w	2	2353	2270	bitcoin_miner	2	1489	1297

ISPD98 Benchmarks without weight[1]

CSD Penn TEXAS Yale

ISPD98 Benchmarks with weight[1]

Titan23 Benchmarks[2]

[1] C. J. Alpert, "The ISPD98 circuit benchmark suite", *Proc. ACM/IEEE International Symposium on Physical Design (ISPD)*, 1998.
[2] K. E. Murray, S. Whitty, S.Liu, J.Luu and V.Betz, "Titan: Enabling large and complex benchmarks in academic CAD", *Proc. Intl. Conf. on Field Programmable Logic and Applications*, 2013.

BACKUP

SpecPart: Supervised Spectral Partitioning

- Apply an initial good solution as a "hint" to *supervise* partitioning process
- Extend the eigenvalue problem for minimizing cutsize to a *generalized* eigenvalue problem for better balanced and supervised partitions
- Other key ideas
 - Partition low-stretch spanning trees based on eigenvector embedding
 - Overlay multiple solutions to obtain a clustering of the hypergraph
 - Optimally partition the clustered hypergraph
 - Autotune existing partitioners to obtain a strong "hint"

SpecPart: Supervised Spectral Partitioning

What is HypergraphPartitioning? <u>https://github.com/TILOS-AI-Institute/MacroPlacement</u>

DAC-2022 Birds-of-a-Feather 220712: Open-Source EDA and Benchmarking

TEXAS Yale